

STATUS AND PERSPECTIVES OF LIQUID ENERGY SOURCES IN THE ENERGY TRANSITION

for MWV, IWO, MEW and UNITI Jens Hobohm (Prognos) jens.hobohm@prognos.com

November 21st 2018

Another report on the energy transition?

- PtX as the key solution
- Climate mitigation scenarios
 - Moderate increase of energy efficiency
 - Restrictions for further expansion of renewable Energies in Germany
- Perspective of the consumer

01	Status of Liquid Energy Sources in the German Supply of Energy and Raw Materials
02	Prospect of Greenhouse Gas Neutral Synthetic Fuels
03	Perspective of the Consumer
04	Scenarios of the German Energy System until 2050
05	Economic Classification
06	Conclusions and Options for Action

01	Status of Liquid Energy Sources in the German Supply of Energy and Raw Materials
02	Prospect of Greenhouse Gas Neutral Synthetic Fuels
03	Perspective of the Consumer
04	Scenarios of the German Energy System until 2050
05	Economic Classification
06	Conclusions and Options for Action

Mineral oil is the most important primary energy source, approx. 60 % of the mineral oil is used in transport

01	Status of Liquid Energy Sources in the German Supply of Energy and Raw Materials
02	Prospect of Greenhouse Gas Neutral Synthetic Fuels
03	Perspective of the Consumer
04	Scenarios of the German Energy System until 2050
05	Economic Classification
06	Conclusions and Options for Action

prognos

In the future GHG-neutral liquid energy sources will also be produced from renewable electricity

prognos

Schematic Diagram of the Fischer-Tropsch Process

Prerequisites for Power-to-Liquid production

- Low cost renewable electricity production
- In particular: wind and photovoltaic energy
- Land surface, technology
- Capital, stable overall conditions
- Advantage for countries with existing oil- and gas infrastructure
- → Investigated regions for production in this study: MENA* und Kazakhstan
- \rightarrow Distance < 5000 km

prognos

In 2050 PtL can be produced at costs of 1,33 €/litre (at an interest rate 7 %)

providing orientation.

Range for Production Cost of PtL by Fischer-Tropsch Process

Chances

- Additional option for climate mitigation
- Utilisation of existing infrastructure
- Existing end user applications can be used
- Option for worlwide trade of renewable energy
- Countries of origin can profit from exports

Risks / Challenges

- Very young technology
- Actual costs are uncertain
- High cost degression for production cost will only be achieved if applied in many countries
- Acceptance is also needed in foreign countries
- Investment security in production regions

01	Status of Liquid Energy Sources in the German Supply of Energy and Raw Materials
02	Prospect of Greenhouse Gas Neutral Synthetic Fuels
03	Perspective of the Consumer
04	Scenarios of the German Energy System until 2050
05	Economic Classification
06	Conclusions and Options for Action

providing orientation.

What are Consumer Preferences in the Fields of Application Domestic Heating and Mobility?

Consumer's perspective: example domestic heating in 2050

providing orientation.

prognos

2050		Building type	SFH/DFH/RH MFH	
		Space requirement inside the building	_	
		Space requirement outside the building		
		Space requirement heating element		
Othisation		Maintenance workload Possibili Electricity advantage (major) Neutra Cost risk Electricity advantage (minor)	al Liquid advantage (major)	
		Cost of procurement		\geq
	1.3	Running cost		>
Economic		Total cost		
with PtL		Cost of procurement		
	0.7	Running cost		
		Total cost		
		GHG emissions		
Environment		Air pollution emissions		
		Noise emissions		

Source: Prognos AG

Consumer's perspective: example mobility in 2050

prognos providing orientation.

2050	Mobility		Passen	ger car	LCV	HCV	
		[km/day]	<50	>200	ca. 100	>200	
	New European Driving Cycle (NEDC)						
	Robustness of range						
	Refuelling time						
Usage	Refuelling infrastucture (city/countryside)						
	Degradation (cyclic ageing, calendar ageing)						
	Driving dynamics (acceleration, maximum speed)						
	Maintenance						
	Cost of procurement						
	Resale value						
Economic	Maintenance						
efficiency	Running cost						/Τ
	Total cost (PtL 0.7 and PtL 1.3)						
	GHG emissions						
	Air pollution emissions: local emissions (tank to wheel)						
Environment	Noise emissions						
Environment	Resource consumption (manufacturing and disposal)						
	Ressourcenverbrauch (Herstellung und Entsorgung)						
Source: Prog	gnos AG 📕 Electricity advantage (major)	N	eutral	Lic	luid advan	tage (maj	or)
	Electricity advantage (minor)			Lic	luid advan	tage (min	or)

	Domestic	Heating	Мо	bility
	2030	2050	2030	2050
Usage	•†	•#		
Economic Efficiency		H	64	H
Environment	#	• †	#	• #

01	Status of Liquid Energy Sources in the German Supply of Energy and Raw Materials
02	Prospect of Greenhouse Gas Neutral Synthetic Fuels
03	Perspective of the Consumer
04	Scenarios of the German Energy System until 2050
04 05	Scenarios of the German Energy System until 2050 Economic Classification

Parameters and important Assumptions in the Scenario Setting (Input)

	Status 2015	Reference 2050	PtX 80 2050	PtX 95 2050
GHG Emissions in Germany based on 1990	- 28 %	- 60 %	- 80 %	~ - 95 %
Renewable Energies installed capacity [GW]	90	224	230	230
Carbon Capture and Storage (CCS)		Nein	Nein	Ja
Energy Intensity [MJ/€2015]	4,8		~ 2,2	
Share of electric heat pumps in heating	3,8 %		14 %	
Share of electric vehicles	~ 0 %		~ 33 %	
Crude oil world market price [\$2015/bbl.]	51	115	115	50

In the target scenarios the fossil mineral oils and gases are replaced by GHG-neutral synthetic energy sources

prognos

Blending Proportions for synthetic Fuels in the PtX 80 and PtX 95 Scenarios

Energy sources and raw materials based on biomass are limited

prognos

Primary Energy Potential and Primary Energy Consumption in PJ

Fossil sources in the primary energy consumption are mainly replaced by PtX and also renewables and biomass

Primary Energy Consumption in PJ by Energy Sources in the Scenarios

21

prognos

The development of the Power-to-Liquid-technology is a no-regret measure for climate-mitigation

BtL

Ptl

Mineral oil

prognos

The use of liquid Energy Sources in Germany in 2050 in the PtX 95 Scenario Final energy demand (PJ) Non energetic

consumption (PJ) Impossible / difficult to replace Competition 2695 617 3 181 144 473 473 189 10 794 169 10 13 781 110 430 4 88 2013 426 157 398 155 394 Air Shipping Heavy road Rail Light road Heat Material use Overall traffic traffic traffic (>3,5 t) traffic (passenger and demand loads < 3.5t)

Mineral oil (light proportions NEC, can be replaced by PtL)

01	Status of Liquid Energy Sources in the German Supply of Energy and Raw Materials
02	Prospect of Greenhouse Gas Neutral Synthetic Fuels
03	Perspective of the Consumer
04	Scenarios of the German Energy System until 2050
05	Economic Classification
06	Conclusions and Options for Action

In Germany additional costs will arise mainly from energy Imports. Additional domestic investments are low

Additional Costs for Energy Imports and Domestic Investments compared to the Reference Scenario

* With the same world market energy prices as in PtX 80

prognos

01	Status of Liquid Energy Sources in the German Supply of Energy and Raw Materials
02	Prospect of Greenhouse Gas Neutral Synthetic Fuels
03	Perspective of the Consumer
04	Scenarios of the German Energy System until 2050
05	Economic Classification
06	Conclusions and Options for Action

prognos

Possible Phases of a market launch of PtX

- Without renewable energies there is no PtX.
- PtL can be produced at costs around 1,33 €₂₀₁₅/Liter in 2050.
- PtL need high international investments. Higher cost of energy.
- Continuous utilisation of existing infrastructure with PtL.
- Liquid energy sources will be needed in the future.
- From today's perspective PtL will be essential for climate mitigation (-95 %).

Providing orientation.

Prognos AG – European Centre for Economic Research and Strategy Consulting.

Jens Hobohm – Member of the Management | Head of energy industries Project manager jens.hobohm@prognos.com 0049 30 52 00 59 242